Major factors of global and regional monsoon rainfall changes: natural versus anthropogenic forcing

Author:

Ha Kyung-JaORCID,Kim Byeong-HeeORCID,Chung Eui-SeokORCID,Chan Johnny C L,Chang Chih-Pei

Abstract

Abstract A number of studies have investigated the mechanisms that determine changes in precipitation, including how a wet region gets wetter. However, not all monsoon areas get wetter—there is a need to understand the major factors behind changes in regional monsoon precipitation, in terms of external forcing and internal variabilities in the last six decades by a combination of different observed datasets and model runs. We have found that time of emergence of anthropogenic signals is robustly detected in the northern African monsoon before the 1990s with the use of the CESM Large Ensemble Project. From CMIP5 model runs and three reanalysis datasets, the results found are that the change in rainfall over African monsoon (AFM) is mainly due to anthropogenic forcing and that over Asian-Australian monsoon (AAM) is affected by internal variability. Moreover, the cause of American monsoon (AMM) rainfall change cannot be known due to a discrepancy among observed datasets. Here we show that the asymmetry between Northern Hemisphere (NH) and Southern Hemisphere (SH) parts by green-house gas (GHG) is detected over the AFM and AAM regions. However, the land monsoon rainfall in the northern AMM is decreased by a combination of GHG and aerosol forcing. In general, the aerosol forcing causes a decreasing rainfall over the monsoon regions. In future projection, the land rainfall over the AAM and AMM are expected to increase and decrease in the future from most models’ results. The asymmetry between an increase in NH and a decrease in SH is dominant in the future from most models’ future simulation results, which is well shown over the AFM and AAM. This study suggests that the physical process of GHG and aerosol effects in rainfall should be explored in the context of regional aspects.

Funder

Institute for Basic Science

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3