Abstract
Abstract
Increased aridity and drought risks are significant global concerns. However, there are few comprehensive studies on the related risks with regard to the differences between relatively weak levels of warming, including the recent targets of the United Nations Framework Convention on Climate Change (UNFCCC) of 1.5 °C or 2 °C. The present study investigates the impacts of 1.5 °C and 2 °C warming on aridification and their non-linearity based on the relationship between available water and energy at the Earth’s terrestrial surface. Large multi-model ensembles with a 4000-model-year in total are sourced from the Half a degree Additional warming, Prognosis, and Projected Impacts (HAPPI) project. Results demonstrate that 2 °C warming results in more frequent dry states in the Amazon Basin, western Europe, and southern Africa, and a limited warming to 1.5 °C will mitigate aridification and increase the frequency of extreme dry-year in these regions. In the Mediterranean region, a significant acceleration of aridification is found from the 1.5 °C to 2 °C warming projections, which indicates a need to limit the warming by 1.5 °C. A substantial portion of Asia is projected to become increasingly humid under both 1.5 °C and 2 °C warming scenarios. In some geographic regions, such as Australia, a strong nonlinear shift of aridification is found as 2 °C warming results in shift to wetter state contrast to significant increases in aridity and dry-year frequency at the weaker level of warming. The results suggest that the responses of regional precipitation to global warming cause the aridity changes, but their nonlinear behaviors along with different warming levels should be assessed carefully, in particular, to incorporate the additional 0.5 °C warming.
Funder
Japan Society for the Promotion of Science
Environmental Restoration and Conservation Agency
Ministry of Education, Culture, Sports, Science and Technology
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献