Enhanced harmony search algorithm for sustainable ecological operation of cascade hydropower reservoirs in river ecosystem

Author:

Niu Wen-jing,Feng Zhong-kai,Jiang Zhi-qiang,Wang Sen,Liu Shuai,Guo Wei,Song Zhen-guo

Abstract

Abstract With the merits of superior performance and easy implementation, the harmony search (HS), a famous population-based evolutionary method, has been widely adopted to resolve global optimization problems in practice. However, the standard HS method still suffers from the defects of premature convergence and local stagnation in the complex multireservoir operation problem. Thus, this study develops an enhanced harmony search (EHS) method to improve the HS’s search ability and convergence rate, where adaptive parameter adjustment strategy is used to enhance the global search performance of the swarm, while the elite-learning evolutionary mode is used to improve the converge trajectory of the population. To verify its practicability, EHS is applied to solve numerical optimization and multireservoir operation problems. The results show that EHS can produce better results than several existing methods in different cases. For instance, the mean objective of EHS is improved by about 23.9%, 28.7% and 26.8% compared with particle swarm optimization, differential evolution and gravitational search algorithm in 1998–1999 typical runoff case. Hence, an effective optimizer is developed for sustainable ecological operation of cascade hydropower reservoirs in river ecosystem.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

CRSRI Open Research Program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference85 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3