Investigating whether the inclusion of humid heat metrics improves estimates of AC penetration rates: a case study of Southern California

Author:

Peplinski McKennaORCID,Kalmus PeterORCID,Sanders Kelly TORCID

Abstract

Abstract Global cooling capacity is expected to triple by 2050, as rising temperatures and humidity levels intensify the heat stress that populations experience. Although air conditioning (AC) is a key adaptation tool for reducing exposure to extreme heat, we currently have a limited understanding of patterns of AC ownership. Developing high resolution estimates of AC ownership is critical for identifying communities vulnerable to extreme heat and for informing future electricity system investments as increases in cooling demand will exacerbate strain placed on aging power systems. In this study, we utilize a segmented linear regression model to identify AC ownership across Southern California by investigating the relationship between daily household electricity usage and a variety of humid heat metrics (HHMs) for ~160000 homes. We hypothesize that AC penetration rate estimates, i.e. the percentage of homes in a defined area that have AC, can be improved by considering indices that incorporate humidity as well as temperature. We run the model for each household with each unique heat metric for the years 2015 and 2016 and compare differences in AC ownership estimates at the census tract level. In total, 81% of the households were identified as having AC by at least one heat metric while 69% of the homes were determined to have AC with a consensus across all five of the heat metrics. Regression results also showed that the r 2 values for the dry bulb temperature (DBT) (0.39) regression were either comparable to or higher than the r 2 values for HHMs (0.15–0.40). Our results suggest that using a combination of heat metrics can increase confidence in AC penetration rate estimates, but using DBT alone produces similar estimates to other HHMs, which are often more difficult to access, individually. Future work should investigate these results in regions with high humidity.

Funder

NSF CBET_CAREER

NASA JPL Neighborhood-Scale Extreme Humid Heat Health Impacts

NSF CBET-CAREER

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3