Abstract
Abstract
Carbon cycle science is at the heart of research on global climate change and its long-term impacts, as it examines the exchange of carbon between the atmosphere, oceans, land, and the impact of fossil fuel emissions on this cycling. Given the urgency of the climate challenge, NASA’s Carbon Monitoring System (CMS) requires all funded investigators to identify and work with stakeholder organizations at project inception to accelerate the transfer of the products developed by funded research into decision making systems. In this study, we contribute to the literature through the implementation of a quantitative analysis of 908 unique survey responses from funded investigators to explore the maturity of the scientist-stakeholder engagement. The paper employs multiple correspondence analysis to provide evidence to support policy options to increase stakeholder integration into research programs. Despite limitations of the dataset used, we demonstrated that multiple funding rounds, long-standing relationships between the stakeholder and scientist, and the scientific productivity of the Principal Investigator, including the ability to produce datasets and research papers on these datasets, all contribute to carbon products moving from research to operational use. The maturity of relationships between scientists and stakeholders was shown to result improved stakeholder engagement. The use of carbon products should be identified in every stage of the program, and that capacity building is needed to support both existing and newly identified stakeholders better understand and use CMS products. As federal, state, and local policy on climate adaptation and mitigation matures, the need for information on carbon will expand. Building of stakeholder-scientist relationships in CMS results in an effective generation and use of datasets to support this need and prototype ways that improved information needed for decision making can be created.
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献