Strategic uses for ancillary bioenergy in a carbon-neutral and fossil-free 2050 European energy system

Author:

Wu FeiORCID,Muller AdrianORCID,Pfenninger StefanORCID

Abstract

Abstract Biomass is a growing renewable energy source in Europe and is envisioned to play a role for realising carbon neutrality, predominantly using dedicated energy crops. However, dedicated biomass is controversial for reasons including its competition with food production or its land-use and emissions impacts. Here we examine the potential role of a land-free alternative: ancillary bioenergy (AB) from biomass sources not primarily grown for energy and without land/food/feed competition. We provide the first dataset of 2050 ancillary biomass potential using the agricultural system model SOLm, which encompasses untapped by-/co-products and detailed agricultural residues. Results show that there is a limited future potential for AB in Europe (2394–10 342 PJ, which is 3–6 times lower than other estimates including dedicated biomass). We design and investigate alternative scenarios where this bioenergy resource can be fully utilised, not utilised at all, or utilised optimally by the sector-coupled energy system model Euro-Calliope. We find that fully utilising ancillary biomass can help phase out controversial nuclear or land-intensive dedicated biomass, so might achieve higher societal acceptability. Using all ancillary biomass as a negative-emissions source at stationary bioenergy carbon capture and storage plants in a nuclear-free system provides additional climate benefits. It is also possible to leave the AB potential completely unused, which barely increases total system cost, but would preserve agricultural nutrients. We conclude that there are synergies and trade-offs among possible strategic uses of AB, which can provide guidelines for a more coherent European bioenergy strategy. Although the 2050 potential of AB is limited, our findings suggest that it could fill critical strategic niches for realising carbon-neutrality.

Funder

H2020 Marie Skłodowska-Curie Actions

H2020 Societal Challenges

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference42 articles.

1. Radical transformation pathway towards sustainable electricity via evolutionary steps;Bogdanov;Nat. Commun.,2019

2. National data files for pre-built sector-coupled Euro-Calliope model;Bryn,2022

3. AR6 scenarios database;Byers,2022

4. Promotion of biofuel consumption in the transport sector: an EU-27 perspective;Cansino;Renew. Sustain. Energy Rev.,2012

5. The role of bioenergy in a fully sustainable global energy system;Cornelissen;Biomass Bioenergy,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3