Abstract
Abstract
The capacity factor (CF) is a vital parameter used to quantify the performance and efficiency of a wind turbine. An increase in generation efficiency leads to higher wind power production, improving the economics within the growing global wind market. In this research, we use a data-driven statistical method to explore the contributions of the three main drivers of CF change: turbine aging, changes in wind speed, and technological improvements. We find that for the group of old turbines (operated before 2008) with an unchanging technical condition, wind increases contributed ∼10% to the increasing CF on average from 2010 to 2020. For new turbines (built from 2008 to 2020), technological improvements had a strong positive effect on CF from 2015 to 2020, exceeding the effect of wind increases and offsetting the effects of aging. On average, rising wind speeds increased CF by ∼5% per year, while technological improvements increased it by ∼12%. As the installed capacity of wind turbines grew, technological progress became the dominant driver in CF increase. However, poor site selection potentially compromised the positive effect on CF afforded by technology changes early in the decade.
Funder
Southern University of Science and Technology
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Fund
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献