Amazonian secondary forests are greatly reducing fragmentation and edge exposure in old-growth forests

Author:

Smith Charlotte CORCID,Barlow Jos,Healey John RORCID,de Sousa Miranda LeonardoORCID,Young Paul JORCID,Schwartz Naomi B

Abstract

Abstract Restoration of tropical landscapes through the expansion of secondary forests is crucial for climate change mitigation and offers co-benefits for biodiversity. However, the strength of these benefits is influenced by the position of these secondary forests within the landscape. Recovery of both carbon stocks and biodiversity in secondary forests are enhanced by proximity to old-growth forests, and old-growth forests may benefit from secondary forests in return through buffering of edge effects and reduced fragmentation. However, to date there has been no biome-wide assessment of secondary forest location relative to old-growth forests. We mapped Amazonian secondary forests and explored their proximity to old-growth forests of different conditions. We then calculated the extent to which secondary forests buffer old-growth edge forest (<120 m from an edge) and the influence of secondary forests on fragmentation. In 2020, 41.2% of Amazonian secondary forest was directly adjacent to old-growth forest and 94.1% was within a fragment connected to old growth. However, adjacency and connectedness fell to 20.1% and 57.4% respectively when only considering extensive structurally intact old-growth forest. Secondary forests buffered 41.1% of old-growth edge forest and, when acting as corridors, reduced the total number of old-growth fragments by 2 million. Our results reveal the importance of understanding spatial context when examining the potential benefits of increasing secondary forest cover. Improved understanding of the benefits of locating secondary forests next to old-growth forests could support the development of more effective climate change mitigation and restoration strategies.

Funder

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3