Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data

Author:

Thomson Eleanor RORCID,Spiegel Marcus PORCID,Althuizen Inge H JORCID,Bass Polly,Chen Shuli,Chmurzynski Adam,Halbritter Aud HORCID,Henn Jonathan JORCID,Jónsdóttir Ingibjörg SORCID,Klanderud KariORCID,Li YaoqiORCID,Maitner Brian SORCID,Michaletz Sean TORCID,Niittynen PekkaORCID,Roos Ruben EORCID,Telford Richard J,Enquist Brian JORCID,Vandvik VigdisORCID,Macias-Fauria MarcORCID,Malhi YadvinderORCID

Abstract

Abstract The Arctic is warming twice as fast as the rest of the planet, leading to rapid changes in species composition and plant functional trait variation. Landscape-level maps of vegetation composition and trait distributions are required to expand spatially-limited plot studies, overcome sampling biases associated with the most accessible research areas, and create baselines from which to monitor environmental change. Unmanned aerial vehicles (UAVs) have emerged as a low-cost method to generate high-resolution imagery and bridge the gap between fine-scale field studies and lower resolution satellite analyses. Here we used field spectroscopy data (400–2500 nm) and UAV multispectral imagery to test spectral methods of species identification and plant water and chemistry retrieval near Longyearbyen, Svalbard. Using the field spectroscopy data and Random Forest analysis, we were able to distinguish eight common High Arctic plant tundra species with 74% accuracy. Using partial least squares regression (PLSR), we were able to predict corresponding water, nitrogen, phosphorus and C:N values (r 2 = 0.61–0.88, RMSEmean = 12%–64%). We developed analogous models using UAV imagery (five bands: Blue, Green, Red, Red Edge and Near-Infrared) and scaled up the results across a 450 m long nutrient gradient located underneath a seabird colony. At the UAV level, we were able to map three plant functional groups (mosses, graminoids and dwarf shrubs) at 72% accuracy and generate maps of plant chemistry. Our maps show a clear marine-derived fertility gradient, mediated by geomorphology. We used the UAV results to explore two methods of upscaling plant water content to the wider landscape using Sentinel-2A imagery. Our results are pertinent for high resolution, low-cost mapping of the Arctic.

Funder

Norges Forskningsråd

SIU-foundation project

Jackson Foundation

Natural Environment Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3