Accelerating China’s power sector decarbonization can save lives: integrating public health goals into power sector planning decisions

Author:

Luo QianORCID,Garcia-Menendez FernandoORCID,Lin JiangORCID,He GangORCID,Johnson Jeremiah XORCID

Abstract

Abstract China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2 emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference60 articles.

1. Challenges and opportunities for carbon neutrality in China;Liu;Nat. Rev. Earth Environ.,2021

2. Enhance solidarity’ to fight COVID-19, Chinese President urges, also pledges carbon neutrality by 2060,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3