Global soil acidification impacts on belowground processes

Author:

Meng ChengORCID,Tian Dashuan,Zeng Hui,Li Zhaolei,Yi ChuixiangORCID,Niu Shuli

Abstract

Abstract With continuous nitrogen (N) enrichment and sulfur (S) deposition, soil acidification has accelerated and become a global environmental issue. However, a full understanding of the general pattern of ecosystem belowground processes in response to soil acidification due to the impacting factors remains elusive. We conducted a meta-analysis of soil acidification impacts on belowground functions using 304 observations from 49 independent studies, mainly including soil cations, soil nutrient, respiration, root and microbial biomass. Our results show that acid addition significantly reduced soil pH by 0.24 on average, with less pH decrease in forest than non-forest ecosystems. The response ratio of soil pH was positively correlated with site precipitation and temperature, but negatively with initial soil pH. Soil base cations (Ca2+, Mg2+, Na+) decreased while non-base cations (Al3+, Fe3+) increased with soil acidification. Soil respiration, fine root biomass, microbial biomass carbon and nitrogen were significantly reduced by 14.7%, 19.1%, 9.6% and 12.1%, respectively, under acid addition. These indicate that soil carbon processes are sensitive to soil acidification. Overall, our meta-analysis suggests a strong negative impact of soil acidification on belowground functions, with the potential to suppress soil carbon emission. It also arouses our attention to the toxic effects of soil ions on terrestrial ecosystems.

Funder

International Collaboration Program of Chinese Academy of Sciences

Strategic Priority Research Program of Chinese Academy of Sciences

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3