Springtime mesoscale convective systems over South China: a historic radar image-based analysis of climatological features, interannual variability, and potential connections with surface aerosol

Author:

Zhang LijuanORCID,Fu Tzung-MayORCID,Hu Zhiqun,Liu Hongjun,Meng Zhiyong,Ma Leiming,Dai Jianhua,Zhang Feng

Abstract

Abstract We objectively analyzed historic radar reflectivity images and diagnosed mature mesoscale convective systems (MCSs) in South China during the spring season (March to May) of 2009–2019. Our goal was to understand the climatological features of mature MCSs, their interannual variations, and potential connections with surface aerosol pollution. Springtime MCSs over South China were most frequently observed in the central and east-coastal parts of Guangdong Province. The mean monthly half-hourly counts of MCSs over South China in March, April, and May were 103 ± 83, 274 ± 298, and 337 ± 225, respectively, with considerable variability from year to year. Approximately 89% of springtime MCSs over South China had a linear or quasi-linear structure, with convective precipitation covering on average 34% of the total precipitating area of each individual MCS, anmied 63% of MCSs consisted of a stratiform precipitation area trailing the convective precipitation. In March, MCSs occurred most frequently mid-day; in April and May, MCSs were most frequent around midnight. From 2013 to 2019, the MCS occurrences in April were significantly lower during years with more aerosol pollution days. This finding potentially supported our previous model study’s finding that elevated anthropogenic aerosol levels may suppress April MCS occurrences in South China via aerosol-cloud-radiation interactions. Further research is required to better understand the intricate relationship between aerosol abundance and MCS activities in this region.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Natural Science Foundation of Shanghai Municipality

Guangdong Province Major Talent Program

Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks

Guangdong University Research Project Science Team

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3