A regional assessment of the water embedded in the US electricity system

Author:

Peer Rebecca A MORCID,Grubert EmilyORCID,Sanders Kelly TORCID

Abstract

Abstract Water consumption from electricity systems can be large, and it varies greatly by region. As electricity systems change, understanding the implications for water demand is important, given differential water availability. This letter presents regional water consumption and consumptive intensities for the United States electric grid by region using a 2014 base year, based on the 26 regions in the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database. Estimates encompass operational (i.e. not embodied in fixed assets) water consumption from fuel extraction through conversion, calculated as the sum of induced water consumption for processes upstream of the point of generation (PoG) and water consumed at the PoG. Absolute water consumption and consumptive intensity is driven by thermal power plant cooling requirements. Regional consumption intensities vary by roughly a factor of 20. This variability is largely attributed to water consumption upstream of the PoG, particularly evaporation from reservoirs associated with hydroelectricity. Solar and wind generation, which are expected to continue to grow rapidly, consume very little water and could drive lower water consumption over time. As the electricity grid continues to change in response to policy, economic, and climatic drivers, understanding potential impacts on local water resources can inform changes.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3