Abstract
Abstract
The problem of reducing the impacts of rising anthropogenic greenhouse gas on warming temperatures has led to the proposal of using stratospheric aerosols to reflect some of the incoming solar radiation back to space. The deliberate injection of sulfur into the stratosphere to form stratospheric sulfate aerosols, emulating volcanoes, will result in sulfate deposition to the surface. We consider here an extreme sulfate geoengineering scenario necessary to maintain temperatures at 2020 levels while greenhouse gas emissions continue to grow unabated. We show that the amount of stratospheric sulfate needed could be globally balanced by the predicted decrease in tropospheric anthropogenic SO2 emissions, but the spatial distribution would move from industrialized regions to pristine areas. We show how these changes would affect ecosystems differently depending on present day observations of soil pH, which we use to infer the potential for acid-induced aluminum toxicity across the planet.
Funder
National Science Foundation
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献