Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble

Author:

Ge Fei,Zhu ShoupengORCID,Luo Haolin,Zhi Xiefei,Wang Hao

Abstract

Abstract Past assessments of coupled climate models have indicated that precipitation extremes are expected to intensify over Southeast Asia (SEA) under the global warming. Here, we use outputs from 15 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to evaluate projected changes in precipitation extremes for SEA at the end of the 21st century. The results suggest that CMIP6 multi-model ensemble medians show better performances in characterizing precipitation extremes than individual models. Projected changes in precipitation extremes linked to rising greenhouse gas (GHG) emissions (represented by the latest proposed Shared Socioeconomic Pathways) increase significantly over the Indochina Peninsula and the Maritime Continent. Substantial changes in the number of very heavy precipitation days (R20mm) and the intensity of daily precipitation (SDII) indicate that such locally heavy rainfall is likely to occur over a short time and that more precipitation extremes over SEA are probable in a warmer future. This is consistent with projections from the Coordinated Regional Downscaling Experiment and CMIP5 models. The present study reveals the high sensitivity of the precipitation extremes over SEA, and highlights the importance of constrained anthropogenic GHG emissions in an ambitious mitigation scenario.

Funder

the Application and Basic Research of Sichuan Department of Science and Technology

National Natural Science Foundation of China

the Special Funds for the Central Government to Guide Local Technological Development

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3