Abstract
Abstract
Since the 1980s, external forcings from increasing greenhouse gases and declining aerosols have had a large effect on European summer temperatures. These forcings may therefore provide an important source of forecast skill, even for timescales as short as a season ahead. However, the relative importance of external forcings for seasonal forecasts has thus far received little attention, particularly on a regional scale. In this study, we investigate forcing-induced skill by comparing the near-surface temperature skill of a multi-model ensemble of seasonal predictions from the Copernicus Climate Change Service archive to that of an uninitialised ensemble of Coupled Model Intercomparison Project phase 6 projections for European summers (June–July–August) spanning the years 1993–2016. As expected, predictive skill over southern Europe is larger for initialised seasonal predictions compared to uninitialised climate projections. However, for northern Europe, we find that predictive skill is generally small in current seasonal models and surprisingly even smaller compared to uninitialised climate projections. These results imply that further research is necessary to understand the role of external forcing on seasonal temperature variations over Europe.
Funder
Horizon 2020 Framework Programme
Royal Society
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献