Vulnerability of European wheat to extreme heat and drought around flowering under future climate

Author:

Senapati NimaiORCID,Halford Nigel GORCID,Semenov Mikhail AORCID

Abstract

Abstract Identifying the future threats to crop yields from climate change is vital to underpin the continuous production increases needed for global food security. In the present study, the vulnerability of European wheat yield to heat and drought stresses around flowering under climate change was assessed by estimating the 95-percentiles of two indices at flowering under rain-fed conditions: the heat stress index (HSI95) and the drought stress index (DSI95). These two indices represent the relative yield losses due heat stress or drought stress around flowering that could be expected to occur once every 20 years on average. The Sirius wheat model was run under the predicted 2050-climate at 13 selected sites, representing the major wheat-growing regions in Europe. A total of 19 global climate models (GCMs) from the CMIP5 ensemble were used to construct local-scale climate scenarios for 2050 (RCP8.5) by downscaling GCMs climate projections with the LARS-WG weather generator. The mean DSI95 due to extreme drought around flowering under the baseline climate (1981–2010) was large over Europe (DSI95 ∼ 0.28), with wide site variation (DSI95 ∼ 0.0–0.51). A reduction of 12% in the DSI95 was predicted under the 2050-climate; however, vulnerability due to extreme drought around flowering would remain a major constraint to wheat yield (DSI95 ∼ 0–0.57). In contrast, HSI95 under the baseline climate was very small over Europe (HSI95 ∼ 0.0–0.11), but was predicted to increase by 79% (HSI95 ∼ 0.0–0.23) under the 2050-climate, categorising extreme heat stress around flowering as an emergent threat to European wheat production. The development of wheat varieties that are tolerant to drought and heat stresses around flowering, is required, if climate change is not to result in a reduction of wheat yield potential under the future climate in Europe.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3