Diverse paradigms of residential development inform water use and drought-related conservation behavior

Author:

Quesnel Kimberly JORCID,Agrawal Saahil,Ajami Newsha KORCID

Abstract

Abstract Widespread urbanization has led to diverse patterns of residential development, which are linked to different resource consumption patterns, including water demand. Classifying neighborhoods based on urban form and sociodemographic features can provide an avenue for understanding community water use behaviors associated with housing alternatives and different residential populations. In this study, we leveraged built environment data from the online real estate aggregator Zillow to develop neighborhood typologies and community clusters via a sequence of unsupervised learning methods. Five distinct clusters, spatially segregated despite no geospatial inputs, were associated with unique single-family residential water use and conservation patterns and trends. The two highest-income clusters had divergent behavior, especially during and after a historic drought, thus unraveling conventional income–water use and income–water conservation relationships. These clustering results highlight evolving water use regimes as traditional patterns of development are replaced with compact, water-efficient urban form. Defining communities based on built environment and sociodemographic characteristics, instead of sociodemographic features alone, led to 3% to 30% improvements in cluster water use and conservation cohesion. These analyses demonstrate the importance of smart development across rapidly urbanizing areas in water-scarce regions across the globe.

Funder

Stanford Woods Institute for the Environment

U.S. Environmental Protection Agency

Division of Engineering Education and Centers

Stanford Bill Lane Center for the American West

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3