Effects of extreme temperature on China’s tea production

Author:

Yan YulinORCID,Jeong SujongORCID,Park Chang-EuiORCID,Mueller Nathaniel D,Piao ShilongORCID,Park HoonyoungORCID,Joo JaewonORCID,Chen XingORCID,Wang Xuhui,Liu Junguo,Zheng ChunmiaoORCID

Abstract

Abstract The production of tea (Camellia sinensis (L.) Kuntze), the world’s second most consumed beverage, is susceptible to extreme weather events. However, our understanding about the impacts of extreme temperatures and climate change on tea yields remains fairly limited. Here we quantify the historical and predict future fluctuations in tea yield caused by extreme temperatures in China, the largest tea producing country. We found that both heat and cold extremes were associated with significantly reduced tea yields. In the present climate, dominating cold extremes influence more than half of China’s tea production, with a maximum of 56.3% reduced annual production. In the near future, we predict positive net impacts of climate change on tea yield in all study regions at both the 1.5 °C and 2.0 °C global warming levels. Climate warming may diminish the negative impacts of cold extremes to 14%, especially at the current most affected northern tea growing regions (>28° N). However, new areas of yield reduction by intensified heat extremes will emerge, up to 14%–26% yield losses estimated at the Yangtze River (∼30° N) and southern China (<∼25° N) regions. Although the Paris Agreement targets limiting global warming to 1.5 °C, we expect up to 11%–24% heat-induced yield loss in Chongqing, Hunan, Anhui, and Zhejiang. Increasing heat extremes pose the most challenging changes for tea production in China. Therefore, addressing the regional difference of extreme temperature shifts is urgent for adapting tea production to climate change.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3