Hydropeaked rivers need attention

Author:

Batalla R JORCID,Gibbins C NORCID,Alcázar JORCID,Brasington JORCID,Buendia CORCID,Garcia CORCID,Llena MORCID,López RORCID,Palau AORCID,Rennie CORCID,Wheaton J MORCID,Vericat DORCID

Abstract

Abstract Hydropower is considered a renewable form of energy production, but generating electricity from rivers is not always environmentally benign. The global demand for renewables is increasing rapidly as fossil fuels are gradually phased out, so rivers will continue to be subjected to the pressures imposed by hydropower for decades to come. Finding ways of operating hydropower plants that limit impacts on downstream river ecosystems is therefore a pressing global concern. Usually, these plants cause marked and rapid fluctuations in flow in downstream river reaches, termed ‘hydropeaking’. Hydropeaks result in a variety of ecological changes in the dynamic mountain rivers they typically affect; declines in fish and insect populations are evident, especially in reaches immediately downstream from the plant. While these changes are often acute and readily apparent, the underlying causal mechanisms remain unclear. We argue here that riverbed sediments are a critical but neglected causal link between hydropeaking flow regimes and ecological changes. We outline how a variety of tools from different branches of river science can now be brought together to understand precisely why hydropeaking alters sediment dynamics; these tools provide a mechanistic explanation for changes in bed sedimentary conditions and channel form across multiple scales and, consequently, a better understanding of ecological changes. By allowing us to simulate the effects of flow fluctuations on sediment dynamics and channel form, these tools also allow us to develop ways of releasing water from hydropeaking dams that limit impacts on aquatic habitat and species.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3