Elevation dependence of projected hydro-climatic change in eastern Siberia

Author:

Finnegan Joseph MORCID,Miller James R

Abstract

Abstract Over the last several decades, eastern Siberia has experienced some of the largest temperature increases worldwide. We use the RCP8.5 simulation of the Community Climate System Model version 4 to examine how projected monthly changes in temperature and hydro-climatic variables in eastern Siberia depend on latitude and elevation. Temperature increases are largest at the highest latitudes in winter and late fall and are smaller at higher elevations. For precipitation and snowfall, there is a latitudinal dependence in autumn and spring, with precipitation, snowfall, and snow depth mostly increasing between 60 and 70° N. Although snow cover extent (SCE) decreases almost everywhere, the largest changes occur during the transition seasons which we define as spring and autumn, and the timing of the changes depends on latitude, elevation, and the specific month within seasons. The decreases in SCE are larger at lower latitudes and lower elevations in April and November and larger at higher elevations and higher latitudes in June and September. For the highest latitudes, snow depth actually increases, and increases more at higher elevations. These projections are generally consistent with those of four other climate models. For precipitation, all models project increases in non-summer seasons, but they are not consistent with respect to the direction of the elevation dependence of precipitation. We discuss the complex interactions among the projected changes in all the variables.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3