Mobilization of subsurface carbon pools driven by permafrost thaw and reactivation of groundwater flow: a virtual experiment

Author:

Mohammed Aaron AORCID,Guimond Julia AORCID,Bense Victor FORCID,Jamieson Rob CORCID,McKenzie Jeffrey MORCID,Kurylyk Barret LORCID

Abstract

Abstract Permafrost thaw leads to an increase in groundwater circulation and potential mobilization of organic carbon sequestered in deep Arctic sediments (e.g. 3–25 m below surface). Upon thaw, a portion of this carbon may be transported along new groundwater flow paths to surface waters or be microbially transformed or immobilized by in-situ biogeochemical reactions. The fate of thaw-mobilized carbon impacts surface water productivity and global climate. We developed a numerical model to investigate the effects of subsurface warming, permafrost thaw, and resultant increased groundwater flow on the mobilization and reactive transport of dissolved organic carbon (DOC). Synthetic simulations demonstrate that mobilization and groundwater-borne DOC export are determined by subsurface thermo-chemical conditions that control the interplay of DOC production (organic matter degradation), mineralization, and sorption. Results suggest that peak carbon mobilization from these depths precedes complete permafrost loss, occurring within two centuries of thaw initiation with the development of supra-permafrost groundwater flow systems. Additionally, this study highlights the lack of field data needed to constrain these new models and apply them in real-word site-specific applications, specifically the amount and spatial variability of organic carbon in deep sediments and data to constrain DOC production rates for groundwater systems in degrading permafrost. Modeling results point to key biogeochemical parameters related to organic matter and carbon bioavailability to be measured in the field to bridge the gap between models and observations. This study provides a foundation for further developing a physics-based modeling framework to incorporate the influence of groundwater flow and permafrost thaw on permafrost DOC dynamics and export, which is imperative for advancing understanding and prediction of carbon release and terrestrial-aquatic carbon exchange in warming Artic landscapes in the coming decades.

Funder

Ocean Frontier Institute

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference80 articles.

1. Evolution of shallow groundwater flow systems in areas of degrading permafrost;Bense;Geophys. Res. Lett.,2009

2. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate;Bense;J. Geophys. Res.,2012

3. The 2004 geothermal map of North America, explanation of resources and applications;Blackwell;Trans.—Geotherm. Resour. Counc.,2004

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3