Predicting electricity infrastructure induced wildfire risk in California

Author:

Yao Mengqi,Bharadwaj Meghana,Zhang Zheng,Jin Baihong,Callaway Duncan S

Abstract

Abstract This paper examines the use of risk models to predict the timing and location of wildfires caused by electricity infrastructure. Our data include historical ignition and wire-down points triggered by grid infrastructure collected between 2015–2019 in Pacific Gas & Electricity territory along with various weather, vegetation, and very high resolution data on grid infrastructure including location, age, and materials. With these data we explore a range of machine learning methods and strategies to manage training data imbalance. The best area under the receiver operating characteristic we obtain is 0.776 for distribution feeder ignitions and 0.824 for transmission line wire-down events, both using the histogram-based gradient boosting tree algorithm with under-sampling. We then use these models to identify which information provides the most predictive value. After line length, we find that weather and vegetation features dominate the list of top important features for ignition or wire-down risk. Distribution ignition models show more dependence on slow-varying vegetation variables such as burn index, energy release content, and tree height, whereas transmission wire-down models rely more on primary weather variables such as wind speed and precipitation. These results point to the importance of improved vegetation modeling for feeder ignition risk models, and improved weather forecasting for transmission wire-down models. We observe that infrastructure features make small but meaningful improvements to risk model predictive power.

Funder

the University of California Office of the President Laboratory Fees Program

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference31 articles.

1. Location, timing and extent of wildfire vary by cause of ignition;Syphard;Int. J. Wildland Fire,2015

2. 2019 wildfire risk report;Jeffery,2019

3. 2021 wildfire mitigation plan report,2021

4. Artificial intelligence for forest fire prediction;Sakr,2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3