Effects of point and nonpoint source controls on total phosphorus load trends across the Chesapeake Bay watershed, USA

Author:

Zhang QianORCID,Bostic Joel TORCID,Sabo Robert DORCID

Abstract

Abstract Reduction of total phosphorus (TP) loads has long been a management focus of Chesapeake Bay restoration, but riverine monitoring stations have shown mixed temporal trends. To better understand the regional patterns and drivers of TP trends across the Bay watershed, we compiled and analyzed TP load data from 90 non-tidal network stations using clustering and random forest (RF) approaches. These stations were categorized into two distinct clusters of short-term (2013–2020) TP load trends, i.e. monotonic increase (n = 35) and monotonic decline (n = 55). RF models were developed to identify likely regional drivers of TP trend clusters. Reductions in point sources and agricultural nonpoint sources (i.e. fertilizer) both contributed to water-quality improvement in our period of analysis, thereby demonstrating the effectiveness of nutrient management and the importance of continuing such efforts. In addition, declining TP trends have a larger chance to occur in carbonate areas but a smaller chance in Coastal Plain areas, with the latter likely reflecting the effect of legacy P. To provide spatially explicit information, TP trend clusters were predicted for the entire watershed at the scale of river segments, which are more directly relevant to watershed planning. Among the 975 river segments, 544 (56%) and 431 (44%) were classified as ‘monotonic increase’ and ‘monotonic decrease’, respectively. Furthermore, these predicted TP trend clusters were paired with our previously published total nitrogen (TN) trend clusters, showing that TP and TN both declined in 185 segments (19%) and neither declined in 337 segments (35%). Broadly speaking, large-scale nutrient reduction efforts are underway in many regions to curb eutrophication. Water-quality responses and drivers may differ among systems, but our work provides important new evidence on the effectiveness of management efforts toward controlling point and nonpoint sources.

Funder

U.S. Environmental Protection Agency

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3