Trends and controls on water-use efficiency of an old-growth coniferous forest in the Pacific Northwest

Author:

Jiang YueyangORCID,Still Christopher J,Rastogi Bharat,Page Gerald F M,Wharton Sonia,Meinzer Frederick C,Voelker Steven,Kim John BORCID

Abstract

Abstract At the ecosystem scale, water-use efficiency (WUE) is defined broadly as the ratio of carbon assimilated to water evaporated by an ecosystem. WUE is an important aspect of carbon and water cycling and has been used to assess forest ecosystem responses to climate change and rising atmospheric CO2 concentrations. This study investigates the influence of meteorological and radiation variables on forest WUE by analyzing an 18 year (1998–2015) half-hourly time series of carbon and water fluxes measured with the eddy covariance technique in an old-growth conifer forest in the Pacific Northwest, USA. Three different metrics of WUE exhibit an overall increase over the period 1998–2007 mainly due to an increase in gross primary productivity (GPP) and a decrease in evapotranspiration (ET). However, the WUE metrics did not exhibit an increase across the period from 2008 to 2015 due to a greater reduction in GPP relative to ET. The strength of associations among particular meteorological variables and WUE varied with the scale of temporal aggregation used. In general, vapor pressure deficit and air temperature appear to control WUE at half-hourly and daily time scales, whereas atmospheric CO2 concentration was identified as the most important factor controlling monthly WUE. Carbon and water fluxes and the consequent WUE showed a weak correlation to the Standard Precipitation Index, while carbon fluxes were strongly dependent on the combined effect of multiple climate factors. The inferred patterns and controls on forest WUE highlighted have implications for improved understanding and prediction of possible adaptive adjustments of forest physiology in response to climate change and rising atmospheric CO2 concentrations.

Funder

OSU-USDA joint-venture agreement

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3