Soil organic matter protects US maize yields and lowers crop insurance payouts under drought

Author:

Kane Daniel A,Bradford Mark A,Fuller Emma,Oldfield Emily E,Wood Stephen A

Abstract

Abstract Higher levels of soil organic matter improve soil water retention, meaning they could mitigate agricultural yield losses from drought. Yet evidence to support such claims is mixed and incomplete. Using data from 12 376 county-years in the United States of America, we show that counties with higher soil organic matter are associated with greater yields, lower yield losses, and lower rates of crop insurance payouts under drought. Under severe drought, an increase of 1% soil organic matter was associated with a yield increase of 2.2 ± 0.33 Mg ha−1 (32.7 bu ac−1) and a 36 ± 4.76% reduction in the mean proportion of liabilities paid. Similar, yet smaller, effects were found for less severe levels of drought and this effect was reduced as soil clay content increased. Confirmatory pathway analyses indicate that this positive association of soil organic matter and yields under drought is partially explained by positive effects of soil organic matter on available water capacity and cation exchange capacity, but that soil organic matter may be imparting yield protection via mechanisms not fully captured by those metrics. Overall, our results suggest soil organic matter predicts yield resilience at regional scales in the United States. We argue that data on soil organic matter should be used in agricultural policy and financial planning, with our analyses providing quantitative evidence of the co-benefits of soil organic matter believed fundamental to advancing soil health and carbon sequestration initiatives.

Funder

Soil Health Institute

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference57 articles.

1. Global climate change and US agriculture;Adams;Nature,1990

2. lme4: linear mixed-effects models using “Eigen” and S4;Bates,2020

3. aqp: algorithms for quantitative pedology;Beaudette,2020

4. Creating drought-resistant soil;Bot,2005

5. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America;Bowles;One Earth,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3