Impact of Indian Ocean Dipole on Atlantic Niño predictive skill

Author:

Liu AoORCID,Zuo JinqingORCID,Tian Ben,Lu Bo

Abstract

Abstract Recent studies suggest that tropical Indian Ocean sea surface temperature (SST) anomalies, especially those associated with the Indian Ocean Dipole (IOD), may trigger Atlantic Niño through atmospheric teleconnection. However, it remains unclear whether the former has an impact on the prediction skill of the latter. This work applies hindcasts from 21 operational seasonal forecast systems based on dynamical climate models to verify the impact of the IOD in boreal autumn on the predictive skill of the Atlantic Niño in the following winter. The results indicate that the prediction skills of both the IOD and Atlantic Niño show pronounced seasonality, with a peak in the target season of boreal autumn for the former and in the following winter for the latter. The models with a stronger connection between the boreal autumn IOD and the following winter Atlantic Niño appear to have a higher skill in predicting the latter when compared to the weaker connection models. This leads to a significant in-phase relationship between the prediction skills of the boreal winter Atlantic Niño and the strength of the IOD–Atlantic Niño connection among the models. When compared to the weaker connection models, the stronger connection models tend to simulate a warmer climatological mean of SST in the tropical Indian Ocean during boreal autumn and winter. The warmer climatological mean of SST benefits a stronger atmospheric circulation response to the underlying SST forcing associated with the IOD. This suggests that mean state bias in the tropical Indian Ocean plays a role in modulating the strength of the simulated IOD–Atlantic Niño connection and thus prediction skill of the Atlantic Niño in boreal winter.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundations of China

the Joint Research Project for Meteorological Capacity Improvement

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3