Assumptions about prior fossil fuel inventories impact our ability to estimate posterior net CO2 fluxes that are needed for verifying national inventories

Author:

Oda TomohiroORCID,Feng Liang,Palmer Paul IORCID,Baker David F,Ott Lesley E

Abstract

Abstract Monitoring national and global greenhouse gas (GHG) emissions is a critical component of the Paris Agreement, necessary to verify collective activities to reduce GHG emissions. Top-down approaches to infer GHG emission estimates from atmospheric data are widely recognized as a useful tool to independently verify emission inventories reported by individual countries under the United Nation Framework Convention on Climate Change. Conventional top-down atmospheric inversion methods often prescribe fossil fuel CO2 emissions (FFCO2) and fit the resulting model values to atmospheric CO2 observations by adjusting natural terrestrial and ocean flux estimates. This approach implicitly assumes that we have perfect knowledge of FFCO2 and that any gap in our understanding of atmospheric CO2 data can be explained by natural fluxes; consequently, it also limits our ability to quantify non-FFCO2 emissions. Using two independent FFCO2 emission inventories, we show that differences in sub-annual emission distributions are aliased to the corresponding posterior natural flux estimates. Over China, for example, where the two inventories show significantly different seasonal variations in FFCO2, the resulting differences in national-scale flux estimates are small but are significant on the subnational scale. We compare natural CO2 flux estimates inferred from in-situ and satellite observations. We find that sparsely distributed in-situ observations are best suited for quantifying natural fluxes and large-scale carbon budgets and less suitable for quantifying FFCO2 errors. Satellite data provide us with the best opportunity to quantify FFCO2 emission errors; a similar result is achievable using dense, regional in-situ measurement networks. Enhancing the top-down flux estimation capability for inventory verification requires a coordinated activity to (a) improve GHG inventories; (b) extend methods that take full advantage of measurements of trace gases that are co-emitted during combustion; and (c) improve atmospheric transport models.

Funder

Natural Environment Research Council

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3