Diverging climate response of corn yield and carbon use efficiency across the U.S.

Author:

Yu Shuo,Falco NicolaORCID,Patel Nivedita,Wu Yuxin,Wainwright Haruko

Abstract

Abstract In this paper, we developed an open-source package to analyze the overall trend and responses of both carbon use efficiency (CUE) and corn yield to climate factors for the contiguous United States. Our algorithm enables automatic retrieval of remote sensing data through the Google Earth Engine (GEE) and U.S. Department of Agriculture (USDA) agricultural production data at the county level through application programming interface (API). Firstly, we integrated satellite products of net primary productivity and gross primary productivity based on the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, and climatic variables from the European Centre for Medium-Range Weather Forecasts. Secondly, we calculated CUE and commonly used climate metrics. Thirdly, we investigated the spatial heterogeneity of these variables. We applied a random forest algorithm to identify the key climate drivers of CUE and crop yield, and estimated the responses of CUE and yield to climate variability using the spatial moving window regression across the U.S. Our results show that growing degree days (GDD) has the highest predictive power for both CUE and yield, while extreme degree days (EDD) is the least important explanatory variable. Moreover, we observed that in most areas of the U.S., yield increases or stays the same with higher GDD and precipitation. However, CUE decreases with higher GDD in the north and shows more mixed and fragmented interactions in the south. Notably, there are some exceptions where yield is negatively correlated with precipitation in the Missouri and Mississippi River Valleys. As global warming continues, we anticipate a decrease in CUE throughout the vast northern part of the country, despite the possibility of yield remaining stable or increasing.

Funder

Advanced Research Projects Agency - Energy

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference49 articles.

1. The boundless carbon cycle;Battin;Nat. Geosci.,2009

2. Putting the empirical commodity storage model back on track: crucial implications of a “negligible” trend;Bobenrieth;Am. J. Agric. Econ.,2021

3. Random forests;Breiman;Mach. Learn.,2001

4. POLARIS: a 30-meter probabilistic soil series map of the contiguous United States;Chaney;Geoderma,2016

5. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3