Fewer tropical cyclones yield more near-inertial wind work to the global ocean over the past four decades

Author:

Ma YongguiORCID,Shu Yeqiang,Wang Dongxiao,Hu Zhan,Li Mingting,Song Wei

Abstract

Abstract In general, tropical cyclones (TCs) will inject energy into oceanic inertial motion‒a prevalent phenomenon in the ocean. Under global warming, the intensity of TCs is on the rise, while their frequency has exhibited a decline since 2000. However, the long-term trend of this energy infusion is an underexplored problem in this context. Using a damped-slab model, we computed the wind work exerted by TCs on the ocean’s mixed-layer inertial motions. Our results show that the global wind work has increased by approximately 50% from 1979 to 2023. The wind work increase of strong TCs (Saffir–Simpson levels 4–5) is the major contributor to the increasing trend of global wind work, primarily due to their increasing frequency and substantial wind stress. At basin scale, the wind work input of the North Atlantic TCs has increased by 2 times, owing to an increase in both their intensity and frequency. Specifically, in the South Indian and the eastern North Pacific basins, the rise in wind work is primarily attributed to the enhanced wind energy of TCs within the inertial bands.

Funder

Basic Frontiers and Innovative Development 2023 ”Integration” Project of South China Sea Institute of Oceanology

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3