Global mean thermosteric sea level projections by 2100 in CMIP6 climate models

Author:

Jevrejeva SvetlanaORCID,Palanisamy Hindumathi,Jackson Luke P

Abstract

Abstract Most of the excess energy stored in the climate system is taken up by the oceans leading to thermal expansion and sea level rise. Future sea level projections allow decision-makers to assess coastal risk, develop climate resilient communities and plan vital infrastructure in low-elevation coastal zones. Confidence in these projections depends on the ability of climate models to simulate the various components of future sea level rise. In this study we estimate the contribution from thermal expansion to sea level rise using the simulations of global mean thermosteric sea level (GMTSL) from 15 available models in the Coupled Model Intercomparison Project Phase 6 (CMIP6). We calculate a GMTSL rise of 18.8 cm [12.8–23.6 cm, 90% range] and 26.8 cm [18.6–34.6 cm, 90% range] for the period 2081–2100, relative to 1995–2014 for SSP245 and SSP585 scenarios respectively. In a comparison with a 20 model ensemble from Coupled Model Intercomparison Project Phase 5 (CMIP5), the CMIP6 ensemble mean of future GMTSL (2014–2100) is higher for both scenarios and shows a larger variance. By contrast, for the period 1901–1990, GMTSL from CMIP6 has half the variance of that from CMIP5. Over the period 1940–2005, the rate of CMIP6 ensemble mean of GMTSL rise is 0.2 ± 0.1 mm yr−1, which is less than half of the observed rate (0.5 ± 0.02 mm yr−1). At a multi-decadal timescale, there is an offset of ∼10 cm per century between observed/modelled thermosteric sea level over the historical period and modelled thermosteric sea level over this century for the same rate of change of global temperature. We further discuss the difference in GMTSL sensitivity to the changes in global surface temperature over the historical and future periods.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3