Local and non-local controls on seasonal variations in water availability and use by riparian trees along a hydroclimatic gradient

Author:

Sargeant Christopher I,Singer Michael BlissORCID

Abstract

Abstract As global climate change continues to impact regional water cycles, we may expect further shifts in water availability to forests that create challenges for certain species and biomes. Lowland deciduous riparian forests are particularly vulnerable because tree species cannot migrate out of the stream corridor, and they rely on root zone water availability that is controlled by variations in both local climate conditions (e.g. precipitation, evaporation, and infiltration) and non-local hydroclimatic forcing (e.g. streamflow, snowmelt, recharge). To determine how the seasonal water source usage of riparian trees is controlled by local versus non-local variability in hydroclimatic regime, we reconstructed the seasonal oxygen isotope (δ 18 O) signature of water used by two riparian tree species with contrasting rooting depths, comprising ∼800 δ 18 O tree-ring cellulose measurements from 12 tree-level decadal time-series at sub-annual resolution (six samples per year), along a strong hydroclimatic gradient within the Rhône River basin, SE France. These results were evaluated alongside δ 18 O measurements made from potential endmember water sources and independent hydroclimatic metrics. Thus we characterize the seasonal evolution of both potential water availability at distinct rooting depths and tree water source use and investigate the generalized riparian tree response to seasonal variations in local versus non-local hydroclimatic forcing over a decade. We show: (a) distinct seasonal water use between species, based on differential access to groundwater; (b) substantial source switching in both species based on evolving water availability; and (c) that riparian trees are more dependent on locally controlled soil moisture with distance downstream, creating increased vulnerability to locally increasing temperatures. We also find that deeply rooted trees in lowland riparian floodplains are potentially vulnerable to climate change because of their high dependence on water supply from mountains. This effect is more pronounced downstream, where seasonal water table decline may lead to loss of water required for deeply rooted trees.

Funder

Division of Earth Sciences

U.S. Department of Defense

Division of Behavioral and Cognitive Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3