Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated GEDI lidar

Author:

Cushman K CORCID,Armston JohnORCID,Dubayah Ralph,Duncanson LauraORCID,Hancock StevenORCID,Janík David,Král KamilORCID,Krůček MartinORCID,Minor David M,Tang HaoORCID,Kellner James RORCID

Abstract

Abstract The Global Ecosystem Dynamics Investigation (GEDI) is a waveform lidar instrument on the International Space Station used to estimate aboveground biomass density (AGBD) in temperate and tropical forests. Algorithms to predict footprint AGBD from GEDI relative height (RH) metrics were developed from simulated waveforms with leaf-on (growing season) conditions. Leaf-off GEDI data with lower canopy cover are expected to have shorter RH metrics, and are therefore excluded from GEDI’s gridded AGBD products. However, the effects of leaf phenology on RH metric heights, and implications for GEDI footprint AGBD models that can include multiple nonlinear RH predictors, have not been quantified. Here, we test the sensitivity of GEDI data and AGBD predictions to leaf phenology. We simulated GEDI data using high-density drone lidar collected in a temperate mountain forest in the Czech Republic under leaf-off and leaf-on conditions, 51 d apart. We compared simulated GEDI RH metrics and footprint-level AGBD predictions from GEDI Level 4 A models from leaf-off and leaf-on datasets. Mean canopy cover increased by 31% from leaf-off to leaf-on conditions, from 57% to 88%. RH metrics < RH50 were more sensitive to changes in leaf phenology than RH metrics ⩾ RH50. Candidate AGBD models for the deciduous-broadleaf-trees prediction stratum in Europe that were trained using leaf-on measurements exhibited a systematic prediction difference of 0.6%–19% when applied to leaf-off data, as compared to leaf-on predictions. Models with the least systematic prediction difference contained only the highest RH metrics, or contained multiple predictor terms that contained both positive and negative coefficients, such that the difference from systematically shorter leaf-off RH metrics was partially offset among the multiple terms. These results suggest that, with consideration of model choice, leaf-off GEDI data can be suitable for AGBD prediction, which could increase data availability and reduce sampling error in some forests.

Funder

CzechInvest

National Aeronautics and Space Administration

Brown University

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intercomparison of the DART model and GEDI simulator for simulating GEDI waveforms in forests;International Journal of Applied Earth Observation and Geoinformation;2024-11

2. Near-Complete Sampling of Forest Structure from High-Density Drone Lidar Demonstrated by Ray Tracing;Remote Sensing;2024-07-29

3. Influence of Forest Plantation Characteristics on GEDI Returned Energy Distribution;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Effects of Eucalyptus plantation characteristics and environmental factors on GEDI waveform metrics;International Journal of Remote Sensing;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3