Impact of endogenous learning curves on maritime transition pathways

Author:

Franz SebastianORCID,Bramstoft Rasmus

Abstract

Abstract The maritime industry is a crucial hard-to-abate sector that is expected to depend on high-energy density renewable liquid fuels in the future. Traditionally, decarbonization pathways have been assessed assuming exogenous cost trajectories for renewable liquid fuels based on an exogenous learning curve. While past studies have looked at the impact of endogenizing learning curves for a specific technology utilizing linear approximation, a fully endogenous direct non-linear implementation of learning curves in a detailed sectoral model (maritime industry) that explores dynamics concerning sensitive parameters does not yet exist. Here, we apply an open-source optimization model for decarbonizing the maritime industry and further develop the model by encompassing a nonconvex mixed-integer quadratically constrained programming approach to analyze the impact of endogenized learning curves for renewable fuel costs following an experience curve approach. We find that global greenhouse gas emissions are significantly lower (up to 25% over a 30 year horizon) when utilizing endogenously modeled prices for renewable fuels compared to commonly used exogenous learning frameworks. Furthermore, we find that conventional modeling approaches overestimate the cost of climate mitigation, which can have significant policy implication related to carbon pricing and fuel efficiency requirements. In a broader context, this emphasizes the potential opportunities that can be achieved if policymakers and companies accelerate investments that drive down the costs of renewable technologies efficiently and thus trigger endogenous experience-based learning in real life.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3