Processes explaining increased ocean dynamic sea level in the North Sea in CMIP6

Author:

Jesse FrankaORCID,Le Bars DewiORCID,Drijfhout Sybren

Abstract

Abstract Ocean dynamic sea level (ODSL) is expected to be one of the major contributors to sea level rise in the North Sea during the 21st century. This component is defined as the spatial sea level anomaly due to ocean currents, wind stresses and local thermosteric and halosteric effects. Climate models from CMIP5 and CMIP6 show a large spread, as well as an increase between CMIP5 and CMIP6 North Sea ODSL projections. In this study, we apply linear regression models on CMIP5 and CMIP6 data to get a better understanding of the processes that influence ODSL change in the North Sea. We find that neither global surface air temperature nor global mean thermosteric sea level can reproduce ODSL projections based on a linear relation in CMIP6, whereas this was the case for CMIP5. Including the strength of the Atlantic meridional overturning circulation (AMOC) as an additional predictor enables us to reproduce long-term changes in ODSL for both ensembles. The sensitivity to the AMOC increased in CMIP6, which points to a difference in model dynamics between CMIP5 and CMIP6, and a more important role of the deep ocean. To investigate this further, we analyse mixed layer depth data in the North Atlantic. We find that models with a relatively deep mixed layer in the Greenland Sea over the period 1985–2004, project larger rise in ODSL in the North Sea for both CMIP5 and CMIP6. This implies that the location of deep water formation in the North Atlantic potentially influences ODSL in the North Sea. The number of these models increased from CMIP5 to CMIP6, again pointing to a different sensitivity to larger scale processes, potentially explaining the difference between the two ensembles.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3