Quantifying impact-relevant heatwave durations

Author:

Polt Kelley DeORCID,Ward Philip JORCID,de Ruiter MarleenORCID,Bogdanovich EkaterinaORCID,Reichstein MarkusORCID,Frank Dorothea,Orth RenéORCID

Abstract

Abstract Heatwaves are weather hazards that can influence societal and natural systems. Recently, heatwaves have increased in frequency, duration, and intensity, and this trend is projected to continue as a consequence of climate change. The study of heatwaves is hampered by the lack of a common definition, which limits comparability between studies. This applies in particular to the considered time scale for utilised metrics. Here, we study which durations of heatwaves are most impact-relevant for various types of impacts. For this purpose, we analyse societal metrics related to health (heat-related hospitalisations, mortality) and public attention (Google trends, news articles) in Germany. Country-averaged temperatures are calculated for the period of 2010–2019 and the warmest periods of all time scales between 1 and 90 days are selected. Then, we assess and compare the societal response during those periods to identify the heatwave durations with the most pronounced impacts. Note that these durations are based on average temperatures across the given time frame while individual days may be less warm. The results differ slightly between the considered societal metrics but indicate overall that heatwaves induce the strongest societal response at durations between 2 weeks and 2 months for Germany. Finally, we show that heatwave duration affects the societal response independent of, and additionally to, heatwave temperatures. This finding highlights the relevance of making informed choices on the considered time scale in heatwave analyses. The approach we introduce here can be extended to other societal indices, countries, and hazard types to reveal more meaningful definitions of climate extremes to guide future research on these events.

Funder

Deutsche Forschungsgemeinschaft

H2020 Environment

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3