Integrated assessment model diagnostics: key indicators and model evolution

Author:

Harmsen MathijsORCID,Kriegler ElmarORCID,van Vuuren Detlef PORCID,van der Wijst Kaj-IvarORCID,Luderer GunnarORCID,Cui RynaORCID,Dessens Olivier,Drouet LaurentORCID,Emmerling JohannesORCID,Morris Jennifer FayeORCID,Fosse FlorianORCID,Fragkiadakis Dimitris,Fragkiadakis KostasORCID,Fragkos PanagiotisORCID,Fricko OliverORCID,Fujimori ShinichiroORCID,Gernaat DavidORCID,Guivarch CélineORCID,Iyer GokulORCID,Karkatsoulis Panagiotis,Keppo IlkkaORCID,Keramidas KimonORCID,Köberle AlexandreORCID,Kolp PeterORCID,Krey VolkerORCID,Krüger Christoph,Leblanc FlorianORCID,Mittal ShivikaORCID,Paltsev SergeyORCID,Rochedo PedroORCID,van Ruijven Bas JORCID,Sands Ronald DORCID,Sano FuminoriORCID,Strefler JessicaORCID,Arroyo Eveline VasquezORCID,Wada Kenichi,Zakeri BehnamORCID

Abstract

Abstract Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45–61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.

Funder

Horizon 2020 Framework Programme

Seventh Framework Programme

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference16 articles.

1. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models;Andrews;Geophys. Res. Lett.,2012

2. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization;Eyring;Geosci. Model Dev.,2016

3. Model comparisons of the costs of reducing CO2 emissions;Gaskins;Am. Econ. Rev.,1993

4. Summary report of IPCC expert meeting on stabilisation and mitigation scenarios: copenhagen;Halsnæs,2000

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3