Future flooding increases unequal exposure risks to relic industrial pollution

Author:

Marlow ThomasORCID,Elliott James R,Frickel Scott

Abstract

Abstract Climate change is increasing the probability that urban communities with lengthy histories of land-based industrial pollution and ongoing residential segregation will experience more frequent and destructive flooding in the years ahead. This paper investigates where these past, present, and future forces will converge to potentially produce a new type of climate injustice, as the flooding of former, or ‘relic,’ industrial sites threatens to transport sequestered industrial contaminants off site. Merging property-level flood-risk projections from the First Street Foundation with historical data on former hazardous manufacturing facilities in 6 U.S. cities, we identify more than 6000 relic industrial sites with elevated flood risk over the next 30 years. Exploratory spatial analysis reveals that these sites cluster spatially to create identifiable zones of cumulative impact, within which as many as 560 thousand residents and 229 thousand housing units are currently located. Spatial multilevel modeling further indicates that socially vulnerable groups (i.e. racial minorities, those with lower incomes, and those residing in less autonomous housing) are consistently and disproportionately likely to live in these areas. These findings highlight the need to develop new strategic plans to rethink site-based strategies of remediation and to engage residents of historically marginalized communities in planning efforts as government agencies at all levels work to make their cities more resilient and environmentally just in the age of climate change.

Funder

National Science Foundation collaborative research grants

NYUAD Research Institute Award

Superfund Research Program of the National Institute of Environmental Health Sciences

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3