A novel statistical decomposition of the historical change in global mean surface temperature

Author:

Qian Gangzhen,Li QingxiangORCID,Li Chao,Li Haiyan,Wang Xiaolan L,Dong Wenjie,Jones Phil

Abstract

Abstract According to the characteristics of forced and unforced components to climate change, sophisticated statistical models were used to fit and separate multiple scale variations in the global mean surface temperature (GMST) series. These include a combined model of the multiple linear regression and autoregressive integrated moving average models to separate the contribution of both the anthropogenic forcing (including anthropogenic factors (GHGs, aerosol, land use, Ozone, etc) and the natural forcing (volcanic eruption and solar activities)) from internal variability in the GMST change series since the last part of the 19th century (which explains about 91.6% of the total variances). The multiple scale changes (inter-annual variation, inter-decadal variation, and multi-decadal variation) are then assessed for their periodic features in the remaining residuals of the combined model (internal variability explains the rest 8.4% of the total variances) using the ensemble empirical mode decomposition method. Finally, the individual contributions of the anthropogenic factors are attributed using a partial least squares regression model.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3