Challenges and opportunities in precision irrigation decision-support systems for center pivots

Author:

Zhang JingwenORCID,Guan KaiyuORCID,Peng BinORCID,Jiang Chongya,Zhou Wang,Yang Yi,Pan Ming,Franz Trenton E,Heeren Derek M,Rudnick Daran R,Abimbola OlufemiORCID,Kimm Hyungsuk,Caylor Kelly,Good Stephen,Khanna MadhuORCID,Gates John,Cai Yaping

Abstract

Abstract Irrigation is critical to sustain agricultural productivity in dry or semi-dry environments, and center pivots, due to their versatility and ruggedness, are the most widely used irrigation systems. To effectively use center pivot irrigation systems, producers require tools to support their decision-making on when and how much water to irrigate. However, currently producers make these decisions primarily based on experience and/or limited information of weather. Ineffective use of irrigation systems can lead to overuse of water resources, compromise crop productivity, and directly reduce producers’ economic return as well as bring negative impacts on environmental sustainability. In this paper, we surveyed existing precision irrigation research and tools from peer-reviewed literature, land-grant university extension and industry products, and U.S. patents. We focused on four challenge areas related to precision irrigation decision-support systems: (a) data availability and scalability, (b) quantification of plant water stress, (c) model uncertainties and constraints, and (d) producers’ participation and motivation. We then identified opportunities to address the above four challenge areas: (a) increase the use of high spatial-temporal-resolution satellite fusion products and inexpensive sensor networks to scale up the adoption of precision irrigation decision-support systems; (b) use mechanistic quantification of ‘plant water stress’ as triggers to improve irrigation decision, by explicitly considering the interaction between soil water supply, atmospheric water demand, and plant physiological regulation; (c) constrain the process-based and statistical/machine learning models at each individual field using data-model fusion methods for scalable solutions; and (d) develop easy-to-use tools with flexibility, and increase governments’ financial incentives and support. We conclude this review by laying out our vision for precision irrigation decision-support systems for center pivots that can achieve scalable, economical, reliable, and easy-to-use irrigation management for producers.

Funder

NSF Environmental Sustainability Program CAREER award

NASA Carbon Monitoring System

National Institute of Food and Agriculture

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference249 articles.

1. The global SMOS level 3 daily soil moisture and brightness temperature maps;Al Bitar;Earth Syst. Sci. Data,2017

2. Using stable water isotopes to assess the influence of irrigation structural configurations on evaporation losses in semiarid agricultural systems;Al-Oqaili;Agric. For. Meteorol.,2020

3. Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56;Allen,1998

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3