Compact and green urban development—towards a framework to assess urban development for a high-density metropolis

Author:

Fan PeileiORCID,Lee Ying-Chieh,Ouyang Zutao,Huang Shu-Li

Abstract

Abstract This paper proposes a framework for measuring compactness and urban green accessibility in a high-density transit-oriented metropolis and uses Taipei City and its surrounding outskirts, New Taipei City, as a case to illustrate the measurement framework. Two indices, urban compactness index (UCI) and urban green accessibility index (UGAI), are developed to illustrate various aspects of a sustainable urban built environment, with UCI including density of residents and commercial activities, land use mix, street connectivity, access to center/subcenters, and access to transit stops, and UGAI measuring access to public urban green spaces. We found that while great spatial variations exist among different parts, our study area has a distinguished polycentric pattern of UCI index with three distinct clusters around the center and sub-centers illustrating higher index values in 2015. When compared to UCI, UGAI has a similar polycentric but more dispersed spatial pattern, as well as linear patterns along river corridors. We found that most areas of medium or high UCI values are located in areas of either plan-induced or plan-expanded development. UCI values in areas of plan-expanded development are generally higher than that of areas of plan-induced development. UCI and UGAI are spatially correlated to a certain extent. We found that most centers and one particular subcenter have high UCI and UGAI, moving towards both compactness and good green accessibility. Two subcenters with high UCI and low UGAI, i.e. Banqiao and Yonghe, call for planning to provide green spaces for residents living in these rising subcenters. UCI and UGAI can be applied and used to assess compact and green urban development of other cities and they are particularly useful to dense urban environment of large cities in Europe and Asia.

Funder

National Aeronautics and Space Administration

Council for International Exchange of Scholars

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference56 articles.

1. Urban sprawl metrics: an analysis of global urban expansion using GIS;Angel,2007

2. Urban sprawl, compact urban development and green cities. how much do we know, how much do we agree?;Artmann;Ecol. Indic.,2019

3. Urban sprawl measurement from remote sensing data;Bhatta;Appl. Geogr.,2010

4. Parks and people: an environmental justice inquiry in Baltimore, Maryland;Boone;Ann. Assoc. Am. Geogr.,2009

5. Housing for an urban renaissance: implications for social equity;Burton;Housing Stud.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3