Abstract
Abstract
London introduced the world’s most stringent emissions zone, the Ultra Low Emission Zone (ULEZ), in April 2019 to reduce air pollutant emissions from road transport and accelerate compliance with the EU air quality standards. Combining meteorological normalisation, change point detection, and a regression discontinuity design with time as the forcing variable, we provide an ex-post causal analysis of air quality improvements attributable to the London ULEZ. We observe that the ULEZ caused only small improvements in air quality in the context of a longer-term downward trend in London’s air pollution levels. Structural changes in nitrogen dioxide (NO2) and ozone (O3) concentrations were detected at 70% and 24% of the (roadside and background) monitoring sites and amongst the sites that showed a response, the relative changes in air pollution ranged from −9% to 6% for NO2, −5% to 4% for O3, and −6% to 4% for particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5). Aggregating the responses across London, we find an average reduction of less than 3% for NO2 concentrations, and insignificant effects on O3 and PM2.5 concentrations. As other cities consider implementing similar schemes, this study implies that the ULEZ on its own is not an effective strategy in the sense that the marginal causal effects were small. On the other hand, the ULEZ is one of many policies implemented to tackle air pollution in London, and in combination these have led to improvements in air quality that are clearly observable. Thus, reducing air pollution requires a multi-faceted set of policies that aim to reduce emissions across sectors with coordination among local, regional and national government.
Funder
Department of Civil and Environmental Engineering, Imperial College London
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献