The consumptive water footprint of the European Union energy sector

Author:

Vanham DavyORCID,Medarac HrvojeORCID,Schyns Joep FORCID,Hogeboom Rick JORCID,Magagna DavideORCID

Abstract

Abstract Energy security for the EU is a priority of the European Commission. Although both blue and green water resources are increasingly scarce, the EU currently does not explicitly account for water resource use in its energy related policies. Here we quantify the freshwater resources required to produce the different energy sources in the EU, by means of the water footprint (WF) concept. We conduct the most geographically detailed consumptive WF assessment for the EU to date, based on the newest spatial databases of energy sources. We calculate that fossil fuels and nuclear energy are moderate water users (136–627 m3/terajoules (m3 TJ–1)). Of the renewable energy sources, wood, reservoir hydropower and first generation biofuels require large water amounts (9114–137 624 m3 TJ–1). The most water efficient are solar, wind, geothermal and run-of-river hydropower (1–117 m3 TJ–1). For the EU territory for the year 2015, our geographically detailed assessment results in a WF of energy production from domestic water resources of 198 km3, or 1068 litres per person per day. The WF of energy consumption is larger as the EU is to a high level dependent on imports for its energy supply, amounting to 242 km3 per year, or 1301 litres per person per day. The WF of energy production within the 281 EU statistical NUTS-2 (Nomenclature of Territorial Units for Statistics) regions shows spatially heterogeneous values. Different energy sources produced and consumed in the EU contribute to and are produced under average annual and monthly blue water stress and green water scarcity. The amount of production under WS is especially high during summer months. Imported energy sources are also partly produced under WS, revealing risks to EU energy security due to externalisation. For the EU, to decarbonise and increase the share of renewables of its energy supply, it needs to formulate policies that take the water use of energy sources into account. In doing so, the spatial and temporal characteristics of water use and water stress should particularly be considered.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3