Improving the snowpack monitoring in the mountainous areas of Sweden from space: a machine learning approach

Author:

Zhang Jie,Pohjola Veijo A,Pettersson Rickard,Norell Björn,Marchand Wolf-Dietrich,Clemenzi Ilaria,Gustafsson David

Abstract

Abstract Under a warming climate, an improved understanding of the water stored in snowpacks is becoming increasingly important for hydropower planning, flood risk assessment and water resource management. Due to inaccessibility and a lack of ground measurement networks, accurate quantification of snow water storage in mountainous terrains still remains a major challenge. Remote sensing can provide dynamic observations with extensive spatial coverage, and has proved a useful means to characterize snow water equivalent (SWE) at a large scale. However, current SWE products show very low quality in the mountainous areas due to very coarse spatial resolution, complex terrain, large spatial heterogeneity and deep snow. With more high-quality satellite data becoming available from the development of satellite sensors and platforms, it provides more opportunities for better estimation of snow conditions. Meanwhile, machine learning provides an important technique for handling the big data offered from remote sensing. Using the Överuman Catchment in Northern Sweden as a case study, this paper explores the potentials of machine learning for improving the estimation of mountain snow water storage using satellite observations, topographic factors, land cover information and ground SWE measurements from the spatially distributed snow survey. The results show that significantly improved SWE estimation close to the peak of snow accumulation can be achieved in the catchment using the random forest regression. This study demonstrates the potentials of machine learning for better understanding the snow water storage in mountainous areas.

Funder

VINNOVA

Energimyndigheten

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3