Mining the gap in long-term residential water and electricity conservation

Author:

Bolorinos JoseORCID,Rajagopal Ram,Ajami Newsha KORCID

Abstract

Abstract Climate change and economic development provide a strong rationale for urban water and electricity conservation. Although behavioral and technological factors link short-term conservation of both resources, their long-term residential consumption trends have diverged across industrialized nations: from 1990 to 2010, per capita water use decreased, while per capita electricity use increased. This long-term ‘conservation gap’ has not generally been examined but it presents an opportunity to better understand what drives persistent residential conservation. Here, we analyze 2002–2012 water and electricity consumption from 38 000 California residences to characterize the conservation gap and its socio-economic determinants. Aggregate per-residence consumption figures show a 19% decline in water use—concentrated in the 2007–2009 drought—and an 8% increase in electricity use—coinciding with early 2000s economic growth. We find no meaningful socio-economic variation in micro-scale consumption trends across the study area but the ‘gap’ tendency is greater in residences with low customer-turnover, suggesting that widespread factors—including the proliferation of consumer electronics and small appliances—drove electricity use increases. Long-term water conservation was also widespread, suggesting that droughts provide immediate, locally-driven conservation imperatives that have been successfully leveraged for long-term water savings.Similar episodes were not generally available to electricity policy makers during the study period, but extreme climate events could drive energy efficiency campaigns in the future.

Funder

Stanford Woods Institute for the Environment

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference48 articles.

1. Towards a zero-emission, efficient, and resilient buildings and construction sector: global Status Report;Abergel,2017

2. Water Governance in Cities,2016

3. Are residential energy efficiency programs effective? an empirical analysis in southern california;Chuang,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3