Abstract
Abstract
Outbreaks of leaf-feeding Lepidopteran insects substantially weaken the quality of forest trees and strongly affect the ecosystem functions of plant photosynthesis and carbon uptake. The narrow phenological time window of leaf out about ten days, during which Lepidopteran larvae feed on high nutrient newly flushed leaves, may change the insect community and outbreak dynamics by determining the survival rate of larvae. The Chinese pine Caterpillar (Dendrolimus tabulaeformis Tsai et Liu) infestation of the northern Chinese pine (Pinus tabulaeformis) forest in China is a major concern, and accurately modeling the day of insect occurrence (DIO) in the spring remains challenging. With continuous in-situ observed insect activities of 20 plots and satellite and meteorological observations from 1983 to 2014, we found a strong synchronization (r = 0.54, p = 0.001) between the satellite-based vegetation spring phenology, i.e. the green-up day (GUD), and DIO of the pine caterpillar over time. We used partial least squares regression and ridge regression models, and identified that monthly preseason air temperature, wind speed, specific humidity, and downward radiation were key environmental cues that awakened the overwintering pine caterpillars. After removing the collinearity of multiple variables, we showed that the dimensionality reduction-based regression models substantially improved the accuracy of DIO modeling than commonly used models, such as interval and degree-day models. In particular, including GUD significantly enhanced the predictive strength of the models increasing the coefficient of determination (R
2) by 17.1% and consequently a decrease of 16.5% in the root mean square error. We further showed that evapotranspiration changed the environmental moisture content, which indirectly affected the activities of insects. Our results revealed a useful linkage between spring leaf development and insect occurrence, and therefore are of great importance for the large-scale monitoring of pest outbreaks with future remote sensing observations.
Funder
National Natural Science Foundation of China
CAS Interdisciplinary Innovation Team
Key R&D program of China
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献