US residential heat pumps: the private economic potential and its emissions, health, and grid impacts

Author:

Deetjen Thomas AORCID,Walsh Liam,Vaishnav ParthORCID

Abstract

Abstract To explore electrification as a climate change mitigation strategy, we study US residential heat pump adoption, given the current US housing stock. Our research asks (a) how the costs and benefits of heat pump adoption evolve with increased penetration, (b) what rate of heat pump adoption is economic given today’s housing stock, electric grid, energy prices, and heat pump technology, and (c) what effect changing policies, innovations, and technology improvements might have on heat pump adoption. We answer these research questions by simulating the energy consumption of 400 representative single-family houses in each of 55 US cities both before and after heat pump adoption. We use energy prices, CO2 emissions, health damages from criteria air pollutants, and changes in peak electricity demand to quantify the costs and benefits of each house’s heat pump retrofit. The results show that 32% of US houses would benefit economically from installing a heat pump, and 70% of US houses could reduce emissions damages by installing a heat pump. We show that the potential for heat pump adoption varies depending on electric grid, climate, baseline heating fuel, and housing characteristics. Based on these results we identify strategic, technology, and policy insights to stimulate high heat pump adoption rates and deep electrification of the US residential heating sector, which reduces CO2 emissions and the impacts of climate change.

Funder

Alfred P. Sloan Foundation

Center for Climate and Energy Decision Making

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference48 articles.

1. The environmental consequences of electrifying space heating;Vaishnav;Environ. Sci. Technol.,2020

2. Electricity load implications of space heating decarbonization pathways;Waite;Joule,2020

3. The Economics of Electrifying Buildings;Billimoria;Rocky Mountain Institute,2018

4. Strategic GHG reduction through the use of ground source heat pump technology;Hanova;Environ. Res. Lett.,2007

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3