Author:
Jorgenson M Torre,Brown Dana R N,Hiemstra Chris A,Genet Hélène,Marcot Bruce G,Murphy Richard J,Douglas Thomas A
Abstract
Abstract
Alaska has diverse boreal ecosystems across heterogeneous landscapes driven by a wide range of biological and geomorphic processes associated with disturbance and successional patterns under a changing climate. To assess historical patterns and rates of change, we quantified the areal extent of ecotypes and the biophysical factors driving change through photo-interpretation of 2200 points on a time-series (∼1949, ∼1978, ∼2007, ∼2017) of geo-rectified imagery for 22 grids across central Alaska. Overall, 68.6% of the area had changes in ecotypes over ∼68 years. Most of the change resulted from increases in upland and lowland forest types, with an accompanying decrease in upland and lowland scrub types, as post-fire succession led to mid- and late-successional stages. Of 17 drivers of landscape change, fire was by far the largest, affecting 46.5% of the region overall from 1949 to 2017. Fire was notably more extensive in the early 1900s. Thermokarst nearly doubled from 3.9% in 1949 to 6.3% in 2017. Riverine ecotypes covered 7.8% area and showed dynamic changes related to channel migration and succession. Using past rates of ecotype transitions, we developed four state-transition models to project future ecotype extent based on historical rates, increasing temperatures, and driver associations. Ecotype changes from 2017 to 2100, nearly tripled for the driver-adjusted RCP6.0 temperature model (30.6%) compared to the historical rate model (11.5%), and the RCP4.5 (12.4%) and RCP8.0 (14.7%) temperature models. The historical-rate model projected 38 ecotypes will gain area and 24 will lose area by 2100. Overall, disturbance and recovery associated with a wide range of drivers across the patchy mosaic of differing aged ecotypes led to a fairly stable overall composition of most ecotypes over long intervals, although fire caused large temporal fluctuations for many ecotypes. Thermokarst, however, is accelerating and projected to have increasingly transformative effects on future ecotype distributions.
Funder
U.S. Department of Defense
Subject
Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献