Three-dimensional meteorological drought characteristics and associated risk in China

Author:

Zhou Zhiling,Ding Kaixi,Zhang Liping,She Dunxian,Chen Jie,Wang Gangsheng,Xia Jun

Abstract

Abstract Drought as a hazardous natural disaster has been widely studied based on various drought indices. However, the characteristics of droughts have not been robustly explored considering its dual nature in space and time across China in the past few decades. Here, we characterized meteorological drought events from a three-dimensional perspective for the 1961–2018 period in the mainland of China, and attributed the variation of drought intensity to its influencing factors. We further assessed associated drought risk with socioeconomic data for the 2002–2018 period. We found that drought events with high intensity, large area, and long duration are mainly distributed in western and northern China, especially in Inner Mongolia, Xinjiang, Tibet, and Qinghai. The drought intensity and affected area anomalies present a six-phase pattern of ‘negative-positive-negative-positive-negative-positive’ during 1961–2018. The intensity of drought events showed a decreasing trend but the affected area and duration showed an increasing trend in 2009–2018. Over the decades, the centers of high drought intensity and long duration tend to move eastward and northeastward, respectively. The PET variations contributes larger than precipitation variations to drought intensity variations in the arid regions while being opposite in the humid southern regions. Drought risk assessment further indicates that high drought risk areas are concentrated in northern China, including Inner Mongolia, Xinjiang, Gansu, Sichuan, Hebei, and Heilongjiang. Increasing trends in drought risk for the 2002–2018 period are detected in Inner Mongolia, Xinjiang, Sichuan, Henan, Gansu, Hunan, Shanxi, Qinghai. Our findings provide scientific guidance for policymakers to develop adaptive disaster prevention measures.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

National Key Research and Development Program of China

Major projects of National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3