Joint effort among research infrastructures to quantify the impact of plastic debris in the ocean

Author:

Conchubhair Diarmuid ÓORCID,Fitzhenry Deirdre,Lusher AmyORCID,King Andrew L,van Emmerik TimORCID,Lebreton Laurent,Ricaurte-Villota ConstanzaORCID,Espinosa Luisa,O’Rourke Eleanor

Abstract

Abstract Marine debris is one of the most significant problems facing the marine environment, endangering wildlife, polluting oceans and is an issue which holds global significance. Plastics constitute a large proportion of marine debris, and their persistence can cause a number of negative consequences for biota and the environment, including entanglement and ingestion, which can lead to mortality. Most plastics never biodegrade and instead break down into smaller pieces which are more difficult to monitor and eventually become so small (micro and nanoplastics), that they are challenging to observe or intercept in the ocean. Marine-based Research Infrastructures (RIs) monitor several environmental parameters and are situated around the globe; however, none of these are routinely monitoring marine debris or plastics. Currently, the only infrastructures in place with regard to marine debris are ‘physical debris interception infrastructure’ in the form of barriers constructed to prevent marine debris from entering the ocean. Several knowledge gaps and restraints exist within current in situ infrastructure including technological immaturity, diverse methodologies and lack of data harmonisation. Nevertheless, marine RIs could monitor microplastics within the water column on a long-term basis and initial steps towards developing technology are promising.

Funder

H2020 Research Infrastructures

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3